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Abstract— A sensor network may be considered as a large and
complex computer system embedded in the physical environment
that has some influence on the sensors. The environment is
the source of (almost) all activity that occurs in the network.
With a simple example modeled in our toolGLONEMO, we show
the influence of an environment model that allows to describe
correlated stimuli on the set of sensors at a given instant, and
also correlations between successive instants.

I. I NTRODUCTION

Apart from its functional behavior, the main characteristic
of a sensor network is power consumption. All the elements
of a network have some influence on power consumption: the
hardware of the nodes, the method used to access the radio
functionalities, the communication protocols that determine
how long the radio should be on for a particular node, the
application, and even the environment of the network, that
stimulates the sensors and is often the source of the main
activity in the network. Power consumption has to be estimated
in advance, and this can be done by simulating a model.

Recently, we proposed the tool GLONEMO for the accurate
and global modeling of sensor networks. See [9]. One key
feature of GLONEMO is the possibility to include a model of
the physical environment that influences the sensors. We per-
formed some experiments, modeling simple ad-hoc networks,
and we observed that the environment has a strong influence
on the behavior of the system.

In this paper, we illustrate this fact by comparing the
behaviors of the same network (same hardware, same proto-
cols, same application) when simulated with two environment
models: the first one is a model of independent stimuli on all
the sensors, both spatially and temporally, that could be used
in a traditional network simulator where Poisson laws are used
to abstract the arrival of packets at each node; the second one
is an operational non-deterministic model of a moving cloud,
that generates correlated stimuli on the sensors, both spatially
and temporally.

We think that the crucial point is to be able to describe
correlated stimuli.

The structure of the paper is as follows: in Section II,
we briefly describe the elements of the global model we
use; Section III concentrates on the part of the global model

that describes the physical environment, and explains how to
compare simulations. Section IV mentions some related work,
and Section V concludes.

II. T HE GLOBAL MODEL ELEMENTS

The global model described in [9] includes an accurate
modeling of the energy consumption. It is made of the
following elements: the hardware, the protocol layers, the
application, and the environment. We describe the application,
the protocols and the hardware we use in our experiments
about the model of the environment.

Modeling the energy consumed in all these elements pro-
vides an accurate estimation of the lifetime of the sensors.

A. The scenario and the Application

To point out the importance of the environment, we choose a
monitoring application that really depends on the environment.

The role of our network is to warn the sink that there is a
danger. This danger can be the presence of a radioactive cloud,
or the presence of an enemy in a military context, or any other
moving “object”. In the sequel we consider a cloud. When
the danger is detected by a node, it sends an alarm packet
to the sink. Because the cloud will stay some time on the
same node, the sensor could send duplicated alarm messages.
Hence, to avoid the emission of multiple useless messages, we
implement data processing on sensors: the alarm packet is sent
only once for each detection of the cloud (the edge between
”no cloud” and ”cloud”). If the cloud does not move, then the
nodes under the cloud will send only one alarm packet.

To simulate the network, a traffic pattern is needed. For this
example, one solution is to model the packet arrival at each
node, and another solution is to describe the environment as
an additional process.

B. Protocol layers: Routing

In our application, the need to communicate comes from the
environment. We implement directed diffusion [5] which suits
this application perfectly. Figure 1 illustrates the three steps of
the routing protocol. The sink broadcasts an interest message
to the whole network, fig 1(a). This message is sent using
a flooding routing mechanism. Each node retransmits all the
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Fig. 1. The three nodes on the left are concerned by the interest request. All the nodes set up gradients. And only the nodes which detect the Event and
which are concerned by the interest will send an alarm according to the gradient path.
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Fig. 2. Medium Access Control with back-off: B and C send messages. A
and C are not in the range of each other.

packets it receives except the ones it has already forwarded,
hence preventing packets from doing loops in the network.
An interest concerns a specific task and also some nodes,
here the three nodes on the left are concerned. When a node
receives an interest, first it checks whether it is concerned by
the request. Then it sets up a gradient between the sender and
itself (fig 1(b)) and it forwards the packet. The task can be
a periodic one, something like ”send the temperature once an
hour” but it can also depend on the sensing: ”if the temperature
increases sharply, send a message”. Once again, we want to
point out the role of the environment, so we use the second
kind of interests. Otherwise, the environment would only
change the content of the messages but not their number nor
their frequency. The nodes concerned by the request have to
send an interest response. This packet will be routed according
to the interest gradients. The response will take the route taken
by the incoming request. We can already notice that all the
messages from one sensor to the sink will always be routed
through the same nodes. Here, the whole network is concerned
by the interests and only the nodes that detect the event (the
cloud for example) will reply. On figure 1(c), only two nodes
have detected the event.

C. Protocol Layers: Medium Access Control

For observing the effect of the environment on a sensor
network, the MAC layer cannot be omitted.

A perfect MAC layer (with no collisions and no delays) is
sometimes used for simulations. This assumption is too strong
when there is an intrinsic cause of collisions. In our case,
collisions can occur when the sink flows an interest request
through the network but also when the network reacts to an
event in the environment, hence we cannot assume the channel

to be collision free. On the contrary, we want to observe how
the collisions influence the behavior of the network.

Another option often used for simulations is a IEEE 802.11
MAC protocol that has been designed to avoid most of the
collisions (some collisions still occur, however, because of
the hidden nodes problem). We cannot use this option either.
Indeed, our global model includes an accurate modeling of
the energy consumption; since the radio is the most important
source of consumption on a sensor, it is far from realistic to
build a global model around a 802.11 MAC protocol which is
not optimized to be energy-efficient. We need to include the
model of an energy-aware MAC protocol.

The Medium Access Control protocol used for this experi-
ment is a typical sensor MAC protocol. It is a preamble MAC
protocol like Low Power Listening [8] or WiseMAC [3]. See
figure 2. Nodes periodically check whether the channel is free.
If the channel is busy, the node will let its radio on to get the
packet that follows the preamble. Otherwise, it goes back to
sleep. We call a complete cycle of the carrier sense period and
sleep period aframe. The duty cycleis the ratio between the
length of the listen period and the length of the frame. To avoid
collisions we implemented a back-off. The sender has to wait
for a random time before emitting anything, then it scans the
channel and if the channel is clear (Clear Channel Assessment,
CCA), it sends the preamble and then the message. Otherwise,
it delays the emission by setting a timer at random between
0 and cwmax. A preamble precedes each data packet for
alerting the receiving node. All nodes in the network sample
the medium with a common period. Figure 2 gives a possible
timing behavior for three nodes A, B and C.

D. The Hardware
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For the hardware parts, we may model the consumption
of the CPU, the memory, or any other hardware part that
consumes energy.

The idea behind the formal models is the following: each
consuming part of the hardware is described by an automaton
whose states are labelled with powers. Figure 3 corresponds
to the radio. A particular execution of the global model (this
automaton synchronized with other ones) will correspond to
some path in this automaton, for which we can compute the
total energy, knowing how much time we spend in each state.

E. Two Environment Models

Modeling the traffic in a network means modeling the
packet arrival at each terminal. Modeling the packet arrival
at each node is an issue that has been extensively studied in
classical networks. See for example [4]. A classical abstraction
is to use a Poisson model. Interarrival times are exponentially
distributed with rate parameterλ: P (An ≤ t) = 1−exp(−λt).

Another option is to run the network and its environment
together. Instead of modeling the packet arrival, we model
the environment as a process, directly. This usually requires
a more precise specification of the environment. In a sensor
network dedicated to achieve a certain service, this more
precise specification is often available. In other networks, like
the web, the environment is made of all the users. The chaos
model (anything can happen, at any time) may be sufficient.

We describe the two alternative environment models for our
application below.

1) Poisson Processes:In sensor networks, all the nodes in
the network have the same role except the sink. Of course,
because some nodes forward packets from or to the sink
they may achieve higher throughput. However, this does not
concern the environment modeling nor the packet arrival rate
at each node. Hence, the rate parameterλ will be the same for
each node. This corresponds to the fact that we assume the
cloud can appear anywhere on the sensor field with the same
probability.

In this model, the danger detection events at one node are
built with a local timer set using an exponential law, which
means: the danger events (hence the alarm packets) at one
node are independent of the past; the danger events (hence
the alarm packets) at two neighboring nodes are completely
independent, too.

The law to generate the next packet arrival is:

An = b−λ× log(x)c (1)

wherex is a random number generated by a uniform law on
[0, 1]. Our global model is discrete, and the environment model
has to be discrete too. That is why we have to take the floor
part of the generated number.

2) Modeling the environment with Lucky:The Lucky [6]
language proposes to describe the behavior of a dynamic
system by a set of characteristicvariables and a set of
constraintsover these variables. The constraints may relate
the values of several variables at some point in time, but they
can also be used to relate the values of variables at different

------------------wind.luc----------------------
inputs { }
outputs {

Wind_x : float ˜min -5.0 ˜max 5.0 ˜init 0.0;
Wind_y : float ˜min -5.0 ˜max 5.0 ˜init 0.0;

}
locals { }
nodes {

init : stable;
}
start_node { init }
transitions {

init -> init ˜cond
abs (Wind_y - pre Wind_y) < 5.0 and
abs (Wind_x - pre Wind_x) < 5.0

}
------------------cloud.luc---------------------
inputs {

Wind_x : float ˜init 0.0;
Wind_y : float ˜init 0.0;

}
outputs {

x_cloud: float ˜init 400.0
˜max 1000.0 ˜min -100.0;

y_cloud: float ˜init 300.0
˜max 1000.0 ˜min -100.0;

}
locals { }
nodes {

init : stable;
}
start_node { init }
transitions {

init -> init ˜cond
(if Wind_y >= 0.0

then ((y_cloud - pre y_cloud) >= 0.0
and (y_cloud - pre y_cloud) <= Wind_y)

else ((y_cloud - pre y_cloud) <= 0.0
and (y_cloud - pre y_cloud) >= Wind_y))

and
(if Wind_x >= 0.0

then ((x_cloud - pre x_cloud) <= pre Wind_x)
and (x_cloud - pre x_cloud) >= 0.0)

else ((x_cloud - pre x_cloud) <= 0.0
and (x_cloud - pre x_cloud) >= pre Wind_x)

}
Fig. 4. Lucky programs for the environment

points in time. When modeling the moving cloud, this means
we can impose spatial and temporal correlations between the
danger events at each node.

A Lucky program is intrinsically non deterministic. The
Lucky execution engine is based on a constraint solver, for
Boolean and numerical constraints. Executing a Lucky pro-
gram produces a sequence of random values that respect the
constraints. Lucky is connected to GLONEMO.

We model the cloud as a process interacting with the
sensors, and describing the moves of a disk-shaped cloud
according to the wind direction and the wind speed. Figure 4
is the Lucky program. The variablesWind x and Wind y
represent a two-dimensional wind, which does not vary a
lot. The cloud is a disk whose center has the coordinates
x cloud and y cloud . The constraints may involve
expressions likepre x cloud , to talk about the previous
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Fig. 5. Picture of a Glonemo simulation with the Lucky cloud.

value of the x cloud variable. This allows to express
constraints on sequences. The effect of the wind on the cloud
is described by constraints of the form:if Wind x
>= 0.0 then ((x cloud-pre x cloud) <=
Wind x and (x cloud-pre x cloud) >= 0.0).
Generating a sequence of values for the tuple(x cloud,
y cloud) could give:(395.49, 385.98), (395.86,
386.15), (396.22, 386.33), ... .

Figure 5 is a picture of a GLONEMO simulation that includes
the model of the moving cloud (the red disk). The black arrows
shows on the Sink.

III. C OMPARING SIMULATIONS

A. Conditions for Comparing Simulations

We run simulations for two identical networks except their
communication patterns. The Lucky cloud activates the first,
whereas Poisson processes are used for the second.

In order to observe the influence of the environment model,
we need to compare Lucky simulations and Poisson simula-
tions. And for this comparison to be meaningful, we must
choose a criterion. This is not an easy task.

One idea is to compare simulations of the two models that
send the same number of alarms during their lifetime. Note
that the alarms in the Lucky simulation will be more dense,
because the cloud activates several nodes at once.

To ensure this comparison criterion, we tune the parameter
of the exponential law (λ is set to1000× length of the frame,
which is an indirect way of expressing a number of instants),
and we write special constraints in the Lucky model in order
to constrain the time during which the cloud is present.
Technically, this is made possible by our Lucky model of the

cloud, that allows to move it outside of the network, or to stop
it, or to make it vanish.

B. Observations

We run the simulations with 14 mWh batteries for each
node except for the sink. The simulation ends when the whole
network is dead. The other parameters are:

• battery capacities per node = 50 J ( 13.9 mWh)
• 100 J for the sink
• 100 nodes (1 sink and 99 sensors)
• the nodes are on a 700 units square
• transmission range = 120 units
• length of 1 frame = 1 second
• duty cycle = 3%
• cwmax = 100
To evaluate the usefulness of networks, a good parameter is

the ratio between the number of packets received at the sink
and the total number of alarms emitted. For this experiment
λ = 1000 × (length of the frame) and the cloud just crosses
the network. The results are summarized on the next table. It
appears that the network works quite well when it is activated
by Poisson processes. The rate of alarms packets received at
the Sink is greater than sixty percent. With our modeling of
the cloud, the rate falls down. Only ten percent of the alarms
are received at the sink!

Poisson processesLucky cloud
alarms emitted 76 210
alarms received 48 15

corresponding rate 0.63 0.07
number of collision:
interest propagation 189 189

total 218 736
data only 29 547

If the rate is not hundred percents, it is because of the
collisions. Let us observe where the collisions happen. On
figures 6, 7, 8 and 9, we have taken pictures of running
simulations. The cloud can be confined in the down-right
corner (fig 7), or can go everywhere (fig 8) or everywhere
except on the Sink (fig 9). The circles around a node represent
the number of collisions for this node. It may have from 0 to
4 circles if it suffers between 0 to more than 40 collisions.
When a node runs out of battery, a black disk (instead of its
node number) represents it.

On figure 6, nodes are activated by Poisson processes. For
this Poisson experiment, we increase the rate of packet arrival
at each node toλ = 92× length of the frame. i.e., on average,
one alarm each92×length of the frame. Here, most of the
collisions occur on the route that goes to the sink. We can
observe a funnel effect near the Sink. The nodes on that route
are the first to die.

On the contrary, if the nodes are activated by a Lucky cloud,
most of the collisions occur where the cloud went through.
The huge number of collisions in Lucky simulations are local
collisions. Observe figure 7: a lot of packets collided in the
corner where the cloud went. Collisions happen because many
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neighboring nodes are activated at the same moment. Those
nodes, in that corner, die first. On the opposite, nodes near
the sink die later because they do not have a lot of packets to
route.

Poisson processesLucky cloud
alarms emitted 77 148
alarms received 44 15

corresponding rate 0.57 0.10
first node dead 67676 83775

all the nodes are dead 92790 93839
disconnected 84681 85924

The previous table shows information about the life span of
our network in those two environments. The linedisconnected
means that some nodes are no longer connected to the sink.
We show this parameter because as soon as the graph is
unconnected, the network needs maintenance. It appears that
even if the cloud makes the network send a little bit more
alarms, the sensors will die later. In fact, with the Lucky cloud,
the network works so badly that the sensors do not even use
their energy. Alarm packets collide quickly after being sent
whereas in Poisson processes, a single alarm involves many
nodes and make them use their batteries.

We pointed out the behavior differences of the same network
activated with or without an accurate model of the environ-
ment. We showed only some comparisons on the efficiency of
the network, the lifetime and the number of collisions. How-
ever, we could have shown many other parameters. Indeed,
GLONEMO permits to do so. The differences observed are so
considerable that the study of precise environments is worth
continuing.

IV. RELATED WORK

Sridharan et al [11] after a survey on network simulators and
on environment simulators propose to link a Matlab environ-
ment simulator with the sensor network simulator TOSSIM.
The example taken is the monitoring of the health of a building
structure. This is modeled as a state-space system which
follows a differential equation. Matlab suits for that application
because it is dedicated to solve differential equations.

SensorSim [7] is a discrete event simulator dedicated to
sensor networks. In this simulator, the environment is not
modeled but it is taken into account. Each node has a “Sensor
protocol stack” that gets messages from a “Sensor Channel”.
An analogy between the sensor channel and the wireless
channel is done. This only difference is the propagation
characteristics.

J-Sim [10] includes a Sensor channel and two propagation
models are implemented for the phenomena: Seismic and
Acoustic. The sensing phenomenon is created by the Target
node which periodically generates stimuli that propagate on
the sensor channel according to the propagation model.

Downard, in [2], extends the ns-2 framework to include
support for sensor networks. Here also there is an analogy
between the sensor channel and the wireless channel. But, the
author goes further in that analogy. A new “radio” channel

is created for each phenomenon. There are two types of
nodes: the phenomenon nodes can ”communicate” only on
the phenomenon channel and the sensor nodes can receive
information about the phenomena and they communicate on
the “real” radio channel. The phenomenon broadcasts its
presence periodically by sending packets on the phenomenon
channel. In order to avoid collisions between phenomena
which would not be realistic, the mac channel used in the
phenomenon channel is “basic”. Using a radio propagation
model to simulate anything other than electromagnetic wave
propagation is probably unrealistic, but above all it might
be really expensive. Indeed, a routing layer, a mac layer
and several nodes are involved for the modeling of a single
phenomenon.

Demirkol et al [1] have motivations very close to ours. They
propose a traffic model for sensor networks. Their model is a
description of a target moving on a sensor field. The goal of
the network is to detect the target. With the speed of the target,
the density of the sensors, their sensing range and the sensing
interval, they suggest an algorithm to generate realistic packet
traffic. Basically, the idea is that if the target is somewhere at
time t then it cannot be anywhere some moments later.

Even if the environment is not always included in sensor
networks simulations, people are already conscious of the
problems induced by this environment. At the routing layer, for
example, new kinds of communications have been proposed
in the literature, like gossiping and data gathering. With
gossiping, the nodes exchange information locally and then
send only one message to the sink. Data gathering consists
in gathering information before sending it to the sink. This
feature prevents redundant information from being sent to
the sink. Those routing mechanisms are intended to be more
adapted to sensor networks.

Our environment model allows to validate the assumptions
that led to the design of these new communication schemes.
For instance, in our example, gossiping is probably a good
solution to avoid the emission of multiple redundant messages.
Data gathering, however, does not seem to fit the problem. It
reduces the traffic load near the sink, but this has little influ-
ence on the local traffic. These intuitions could be validated
by simulating a global model that includes a precise model of
the environment.

V. CONCLUSION

We illustrated with a small example the influence of a
precise model of the environment. In fact, in all network
simulations, there is a model of the environment. But in
traditional network simulators, it is very abstract. We claim
that these very abstract models, which are limited to the
description of temporally and spatially independent stimuli on
the sensors, are inadequate for sensor networks. Even if we
have a precise specification of the global environment, and
want to include it in the global model, it may still be the case
that this can be done by some distributed algorithm, i.e. by
some additional code on each node. However, in the general
case, the model of the environment needs to be global. We
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describe it as an additional process, that interacts with the
models of the nodes.

In our tool Glonemo, it is possible to describe the envi-
ronment in a wide variety of languages and programming
styles, ranging from pure deterministic algorithms to highly
non deterministic sets of constraints. We think that this should
be sufficient for the modeling of sensor networks. We will
continue to explore the interest of these models, especially
with the communication patterns that are emerging for sensor
networks.

Finally, we consideredsensornetworks only, for the mo-
ment, and the model of the environment is used to evaluate
non functional properties. If we consider the case of sensor and
actuatornetworks, which may interact with their environment
in a closed loop, it will become compulsory to model the
environment, as it is the case with any control system, for
both functional and non functional aspects.
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Fig. 6. Picture of a Glonemo simulation with Poisson processes on all nodes.

Fig. 7. Picture of a Glonemo simulation with the Lucky cloud. The cloud is confined in the down-right zone.

Fig. 8. Picture of a Glonemo simulation with the Lucky cloud. The cloud can be anywhere.

Fig. 9. Picture of a Glonemo simulation with the Lucky cloud. The cloud can be anywhere except on the sink.
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