Module Stdlib

module Stdlib: sig .. end

type int32 
type int64 
type nativeint 
type bytes 
exception Match_failure of (string * int * int)

Exception raised when none of the cases of a pattern-matching apply. The arguments are the location of the match keyword in the source code (file name, line number, column number).

exception Assert_failure of (string * int * int)

Exception raised when an assertion fails. The arguments are the location of the assert keyword in the source code (file name, line number, column number).

exception Invalid_argument of string

Exception raised by library functions to signal that the given arguments do not make sense.

exception Failure of string

Exception raised by library functions to signal that they are undefined on the given arguments.

exception Not_found

Exception raised by search functions when the desired object could not be found.

exception Out_of_memory

Exception raised by the garbage collector when there is insufficient memory to complete the computation.

exception Stack_overflow

Exception raised by the bytecode interpreter when the evaluation stack reaches its maximal size. This often indicates infinite or excessively deep recursion in the user's program. (Not fully implemented by the native-code compiler; see section 11.4.)

exception Sys_error of string

Exception raised by the input/output functions to report an operating system error.

exception End_of_file

Exception raised by input functions to signal that the end of file has been reached.

exception Division_by_zero

Exception raised by division and remainder operations when their second argument is null. (Not fully implemented by the native-code compiler; see section 11.4.)

exception Sys_blocked_io

A special case of Sys_error raised when no I/O is possible on a non-blocking I/O channel.

exception Undefined_recursive_module of (string * int * int)

The initially opened module.

This module provides the basic operations over the built-in types (numbers, booleans, strings, exceptions, references, lists, arrays, input-output channels, ...)

This module is automatically opened at the beginning of each compilation. All components of this module can therefore be referred by their short name, without prefixing them by Stdlib.

Exceptions
val raise : exn -> 'a

Raise the given exception value

val invalid_arg : string -> 'a

Raise exception Invalid_argument with the given string.

val failwith : string -> 'a

Raise exception Failure with the given string.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your programs.

Comparisons
val (=) : 'a -> 'a -> bool

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values may raise Invalid_argument. Equality between cyclic data structures may not terminate.

val (<>) : 'a -> 'a -> bool

Negation of Stdlib.(=).

val (<) : 'a -> 'a -> bool

See Stdlib.(>=).

val (>) : 'a -> 'a -> bool

See Stdlib.(>=).

val (<=) : 'a -> 'a -> bool

See Stdlib.(>=).

val (>=) : 'a -> 'a -> bool

Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with (=). As in the case of (=), mutable structures are compared by contents. Comparison between functional values may raise Invalid_argument. Comparison between cyclic structures may not terminate.

val compare : 'a -> 'a -> int

compare x y returns 0 if x=y, a negative integer if x<y, and a positive integer if x>y. The same restrictions as for = apply. compare can be used as the comparison function required by the Set.Make and Map.Make functors.

val min : 'a -> 'a -> 'a

Return the smaller of the two arguments.

val max : 'a -> 'a -> 'a

Return the greater of the two arguments.

val (==) : 'a -> 'a -> bool

e1 == e2 tests for physical equality of e1 and e2. On integers and characters, physical equality is identical to structural equality. On mutable structures, e1 == e2 is true if and only if physical modification of e1 also affects e2. On non-mutable structures, the behavior of (==) is implementation-dependent; however, it is guaranteed that e1 == e2 implies e1 = e2.

val (!=) : 'a -> 'a -> bool

Negation of Stdlib.(==).

Boolean operations
val not : bool -> bool

The boolean negation.

val (&&) : bool -> bool -> bool

The boolean ``and''. Evaluation is sequential, left-to-right: in e1 && e2, e1 is evaluated first, and if it returns false, e2 is not evaluated at all.

val (&) : bool -> bool -> bool
Deprecated.Stdlib.(&&) should be used instead.
val (or) : bool -> bool -> bool

The boolean ``or''. Evaluation is sequential, left-to-right: in e1 or e2, e1 is evaluated first, and if it returns true, e2 is not evaluated at all.

Integer arithmetic

Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or 263). They do not fail on overflow.

val (~-) : int -> int

Unary negation. You can also write -e instead of ~-e.

val succ : int -> int

succ x is x+1.

val pred : int -> int

pred x is x-1.

val (+) : int -> int -> int

Integer addition.

val (-) : int -> int -> int

Integer subtraction.

val ( * ) : int -> int -> int

Integer multiplication.

val (/) : int -> int -> int

Integer division. Raise Division_by_zero if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y > 0, x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover, (-x) / y = x / (-y) = -(x / y).

val (mod) : int -> int -> int

Integer remainder. If y is not zero, the result of x mod y satisfies the following properties: x = (x / y) * y + x mod y and abs(x mod y) <= abs(y)-1. If y = 0, x mod y raises Division_by_zero. Notice that x mod y is negative if and only if x < 0.

val abs : int -> int

Return the absolute value of the argument.

val max_int : int

The greatest representable integer.

val min_int : int

The smallest representable integer.

Bitwise operations
val (land) : int -> int -> int

Bitwise logical and.

val (lor) : int -> int -> int

Bitwise logical or.

val (lxor) : int -> int -> int

Bitwise logical exclusive or.

val lnot : int -> int

Bitwise logical negation.

val (lsl) : int -> int -> int

n lsl m shifts n to the left by m bits. The result is unspecified if m < 0 or m >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val (lsr) : int -> int -> int

n lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless of the sign of n. The result is unspecified if m < 0 or m >= bitsize.

val (asr) : int -> int -> int

n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is replicated. The result is unspecified if m < 0 or m >= bitsize.

Floating-point arithmetic

Caml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /. 0.0, neg_infinity for -1.0 /. 0.0, and nan (``not a number'') for 0.0 /. 0.0. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity is 0.0, and any operation with nan as argument returns nan as result.

val (~-.) : float -> float

Unary negation. You can also write -.e instead of ~-.e.

val (+.) : float -> float -> float

Floating-point addition

val (-.) : float -> float -> float

Floating-point subtraction

val ( *. ) : float -> float -> float

Floating-point multiplication

val (/.) : float -> float -> float

Floating-point division.

val ( ** ) : float -> float -> float

Exponentiation

val sqrt : float -> float

Square root

val exp : float -> float

Exponential.

val log : float -> float

Natural logarithm.

val log10 : float -> float

Base 10 logarithm.

val cos : float -> float

See Stdlib.atan2.

val sin : float -> float

See Stdlib.atan2.

val tan : float -> float

See Stdlib.atan2.

val acos : float -> float

See Stdlib.atan2.

val asin : float -> float

See Stdlib.atan2.

val atan : float -> float

See Stdlib.atan2.

val atan2 : float -> float -> float

The usual trigonometric functions.

val cosh : float -> float

See Stdlib.tanh.

val sinh : float -> float

See Stdlib.tanh.

val tanh : float -> float

The usual hyperbolic trigonometric functions.

val ceil : float -> float

See Stdlib.floor.

val floor : float -> float

Round the given float to an integer value. floor f returns the greatest integer value less than or equal to f. ceil f returns the least integer value greater than or equal to f.

val abs_float : float -> float

Return the absolute value of the argument.

val mod_float : float -> float -> float

mod_float a b returns the remainder of a with respect to b. The returned value is a -. n *. b, where n is the quotient a /. b rounded towards zero to an integer.

val frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of f. When f is zero, the significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined by f = x *. 2 ** n and 0.5 <= x < 1.0.

val ldexp : float -> int -> float

ldexp x n returns x *. 2 ** n.

val modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

val float : int -> float

Same as Stdlib.float_of_int.

val float_of_int : int -> float

Convert an integer to floating-point.

val truncate : float -> int

Same as Stdlib.int_of_float.

val int_of_float : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if it falls outside the range of representable integers.

val infinity : float

Positive infinity.

val neg_infinity : float

Negative infinity.

val nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0. Stands for ``not a number''.

val max_float : float

The largest positive finite value of type float.

val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon_float : float

The smallest positive float x such that 1.0 +. x <> 1.0.

type fpclass = 
| FP_normal (*

Normal number, none of the below

*)
| FP_subnormal (*

Number very close to 0.0, has reduced precision

*)
| FP_zero (*

Number is 0.0 or -0.0

*)
| FP_infinite (*

Number is positive or negative infinity

*)
| FP_nan (*

Not a number: result of an undefined operation

*)

The five classes of floating-point numbers, as determined by the Stdlib.classify_float function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

String operations

More string operations are provided in module String.

val (^) : string -> string -> string

String concatenation.

Character operations

More character operations are provided in module Char.

val int_of_char : char -> int

Return the ASCII code of the argument.

val char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int" if the argument is outside the range 0--255.

Unit operations
val ignore : 'a -> unit

Discard the value of its argument and return (). For instance, ignore(f x) discards the result of the side-effecting function f. It is equivalent to f x; (), except that the latter may generate a compiler warning; writing ignore(f x) instead avoids the warning.

String conversion functions
val string_of_bool : bool -> string

Return the string representation of a boolean.

val bool_of_string : string -> bool

Convert the given string to a boolean. Raise Invalid_argument "bool_of_string" if the string is not "true" or "false".

val string_of_int : int -> string

Return the string representation of an integer, in decimal.

val int_of_string : string -> int

Convert the given string to an integer. The string is read in decimal (by default) or in hexadecimal (if it begins with 0x or 0X), octal (if it begins with 0o or 0O), or binary (if it begins with 0b or 0B). Raise Failure "int_of_string" if the given string is not a valid representation of an integer.

val string_of_float : float -> string

Return the string representation of a floating-point number.

val float_of_string : string -> float

Convert the given string to a float. Raise Failure "float_of_string" if the given string is not a valid representation of a float.

Pair operations
val fst : 'a * 'b -> 'a

Return the first component of a pair.

val snd : 'a * 'b -> 'b

Return the second component of a pair.

List operations

More list operations are provided in module List.

val (@) : 'a list -> 'a list -> 'a list

List concatenation.

Input/output
type in_channel 

The type of input channel.

type out_channel 

The type of output channel.

val stdin : in_channel

The standard input for the process.

val stdout : out_channel

The standard output for the process.

val stderr : out_channel

The standard error ouput for the process.

Output functions on standard output
val print_char : char -> unit

Print a character on standard output.

val print_string : string -> unit

Print a string on standard output.

val print_int : int -> unit

Print an integer, in decimal, on standard output.

val print_float : float -> unit

Print a floating-point number, in decimal, on standard output.

val print_endline : string -> unit

Print a string, followed by a newline character, on standard output and flush standard output.

val print_newline : unit -> unit

Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.

Output functions on standard error
val prerr_char : char -> unit

Print a character on standard error.

val prerr_string : string -> unit

Print a string on standard error.

val prerr_int : int -> unit

Print an integer, in decimal, on standard error.

val prerr_float : float -> unit

Print a floating-point number, in decimal, on standard error.

val prerr_endline : string -> unit

Print a string, followed by a newline character on standard error and flush standard error.

val prerr_newline : unit -> unit

Print a newline character on standard error, and flush standard error.

Input functions on standard input
val read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.

val read_int : unit -> int

Flush standard output, then read one line from standard input and convert it to an integer. Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

val read_float : unit -> float

Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.

General output functions
type open_flag = 
| Open_rdonly (*

open for reading.

*)
| Open_wronly (*

open for writing.

*)
| Open_append (*

open for appending: always write at end of file.

*)
| Open_creat (*

create the file if it does not exist.

*)
| Open_trunc (*

empty the file if it already exists.

*)
| Open_excl (*

fail if the file already exists.

*)
| Open_binary (*

open in binary mode (no conversion).

*)
| Open_text (*

open in text mode (may perform conversions).

*)
| Open_nonblock (*

open in non-blocking mode.

*)

Opening modes for Stdlib.open_out_gen and Stdlib.open_in_gen.

val open_out : string -> out_channel

Open the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists. Raise Sys_error if the file could not be opened.

val open_out_bin : string -> out_channel

Same as Stdlib.open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Stdlib.open_out.

val open_out_gen : open_flag list -> int -> string -> out_channel

Open the named file for writing, as above. The extra argument mode specify the opening mode. The extra argument perm specifies the file permissions, in case the file must be created. Stdlib.open_out and Stdlib.open_out_bin are special cases of this function.

val flush : out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.

val flush_all : unit -> unit

Flush all open output channels; ignore errors.

val output_char : out_channel -> char -> unit

Write the character on the given output channel.

val output_string : out_channel -> string -> unit

Write the string on the given output channel.

val output : out_channel -> string -> int -> int -> unit

output oc buf pos len writes len characters from string buf, starting at offset pos, to the given output channel oc. Raise Invalid_argument "output" if pos and len do not designate a valid substring of buf.

val output_byte : out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.

val output_binary_int : out_channel -> int -> unit

Write one integer in binary format on the given output channel. The only reliable way to read it back is through the Stdlib.input_binary_int function. The format is compatible across all machines for a given version of Objective Caml.

val output_value : out_channel -> 'a -> unit

Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Stdlib.input_value. See the description of module Marshal for more information. Stdlib.output_value is equivalent to Marshal.to_channel with an empty list of flags.

val seek_out : out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.

val pos_out : out_channel -> int

Return the current writing position for the given channel.

val out_channel_length : out_channel -> int

Return the total length (number of characters) of the given channel. This works only for regular files. On files of other kinds, the result is meaningless.

val close_out : out_channel -> unit

Close the given channel, flushing all buffered write operations. Output functions raise a Sys_error exception when they are applied to a closed output channel, except close_out and flush, which do nothing when applied to an already closed channel. Note that close_out may raise Sys_error if the operating system signals an error when flushing or closing.

val close_out_noerr : out_channel -> unit

Same as close_out, but ignore all errors.

val set_binary_mode_out : out_channel -> bool -> unit

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take place during output. set_binary_mode_out oc false sets the channel oc to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

General input functions
val open_in : string -> in_channel

Open the named file for reading, and return a new input channel on that file, positionned at the beginning of the file. Raise Sys_error if the file could not be opened.

val open_in_bin : string -> in_channel

Same as Stdlib.open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Stdlib.open_in.

val open_in_gen : open_flag list -> int -> string -> in_channel

Open the named file for reading, as above. The extra arguments mode and perm specify the opening mode and file permissions. Stdlib.open_in and Stdlib.open_in_bin are special cases of this function.

val input_char : in_channel -> char

Read one character from the given input channel. Raise End_of_file if there are no more characters to read.

val input_line : in_channel -> string

Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise End_of_file if the end of the file is reached at the beginning of line.

val input : in_channel -> string -> int -> int -> int

input ic buf pos len reads up to len characters from the given channel ic, storing them in string buf, starting at character number pos. It returns the actual number of characters read, between 0 and len (inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and len exclusive means that not all requested len characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read; input must be called again to read the remaining characters, if desired. (See also Stdlib.really_input for reading exactly len characters.) Exception Invalid_argument "input" is raised if pos and len do not designate a valid substring of buf.

val really_input : in_channel -> string -> int -> int -> unit

really_input ic buf pos len reads len characters from channel ic, storing them in string buf, starting at character number pos. Raise End_of_file if the end of file is reached before len characters have been read. Raise Invalid_argument "really_input" if pos and len do not designate a valid substring of buf.

val input_byte : in_channel -> int

Same as Stdlib.input_char, but return the 8-bit integer representing the character. Raise End_of_file if an end of file was reached.

val input_binary_int : in_channel -> int

Read an integer encoded in binary format from the given input channel. See Stdlib.output_binary_int. Raise End_of_file if an end of file was reached while reading the integer.

val input_value : in_channel -> 'a

Read the representation of a structured value, as produced by Stdlib.output_value, and return the corresponding value. This function is identical to Marshal.from_channel; see the description of module Marshal for more information, in particular concerning the lack of type safety.

val seek_in : in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works only for regular files. On files of other kinds, the behavior is unspecified.

val pos_in : in_channel -> int

Return the current reading position for the given channel.

val in_channel_length : in_channel -> int

Return the total length (number of characters) of the given channel. This works only for regular files. On files of other kinds, the result is meaningless.

val close_in : in_channel -> unit

Close the given channel. Input functions raise a Sys_error exception when they are applied to a closed input channel, except close_in, which does nothing when applied to an already closed channel. Note that close_in may raise Sys_error if the operating system signals an error.

val close_in_noerr : in_channel -> unit

Same as close_in, but ignore all errors.

val set_binary_mode_in : in_channel -> bool -> unit

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take place during input. set_binary_mode_out ic false sets the channel ic to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

Operations on large files

Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type int64) instead of regular integers (type int), these alternate functions allow operating on files whose sizes are greater than max_int.

References
type 'a ref = {
   mutable contents : 'a;
}

The type of references (mutable indirection cells) containing a value of type 'a.

val ref : 'a -> 'a ref

Return a fresh reference containing the given value.

val (!) : 'a ref -> 'a

!r returns the current contents of reference r. Equivalent to fun r -> r.contents.

val (:=) : 'a ref -> 'a -> unit

r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.

val incr : int ref -> unit

Increment the integer contained in the given reference. Equivalent to fun r -> r := succ !r.

val decr : int ref -> unit

Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r.

Operations on format strings

See modules Printf and Scanf for more operations on format strings.

type ('a, 'b, 'c, 'd) format4 
type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4 

Simplified type for format strings, included for backward compatibility with earlier releases of Objective Caml. 'a is the type of the parameters of the format, 'c is the result type for the "printf"-style function, and 'b is the type of the first argument given to %a and %t printing functions.

val string_of_format : ('a, 'b, 'c, 'd) format4 -> string

Converts a format string into a string.

val format_of_string : ('a, 'b, 'c, 'd) format4 -> ('a, 'b, 'c, 'd) format4

format_of_string s returns a format string read from the string literal s.

val (^^) : ('a, 'b, 'c, 'd) format4 ->
('d, 'b, 'c, 'e) format4 -> ('a, 'b, 'c, 'e) format4

f1 ^^ f2 catenates formats f1 and f2. The result is a format that accepts arguments from f1, then arguments from f2.

Program termination
val exit : int -> 'a

Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with flush_all. An implicit exit 0 is performed each time a program terminates normally. An implicit exit 2 is performed if the program terminates early because of an uncaught exception.

val at_exit : (unit -> unit) -> unit

Register the given function to be called at program termination time. The functions registered with at_exit will be called when the program executes Stdlib.exit, or terminates, either normally or because of an uncaught exception. The functions are called in ``last in, first out'' order: the function most recently added with at_exit is called first.